This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsuminv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsuminv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsuminv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| gsuminv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gsummptfidminv.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsummptfidminv.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | ||
| gsummptfidminv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | ||
| Assertion | gsummptfidminv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsuminv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsuminv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsuminv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | gsuminv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | gsummptfidminv.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 6 | gsummptfidminv.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 7 | gsummptfidminv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 8 | 6 7 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 9 | 2 | fvexi | ⊢ 0 ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 11 | 7 5 6 10 | fsuppmptdm | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 12 | 1 2 3 4 5 8 11 | gsuminv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |