This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumdifsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumdifsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumdifsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumdifsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| gsumdifsnd.f | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) | ||
| gsumdifsnd.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumdifsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) | ||
| gsumdifsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsumdifsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | ||
| Assertion | gsumdifsnd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∖ { 𝑀 } ) ↦ 𝑋 ) ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdifsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumdifsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumdifsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumdifsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 5 | gsumdifsnd.f | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) | |
| 6 | gsumdifsnd.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsumdifsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) | |
| 8 | gsumdifsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | gsumdifsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 11 | 7 | snssd | ⊢ ( 𝜑 → { 𝑀 } ⊆ 𝐴 ) |
| 12 | difin2 | ⊢ ( { 𝑀 } ⊆ 𝐴 → ( { 𝑀 } ∖ { 𝑀 } ) = ( ( 𝐴 ∖ { 𝑀 } ) ∩ { 𝑀 } ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( { 𝑀 } ∖ { 𝑀 } ) = ( ( 𝐴 ∖ { 𝑀 } ) ∩ { 𝑀 } ) ) |
| 14 | difid | ⊢ ( { 𝑀 } ∖ { 𝑀 } ) = ∅ | |
| 15 | 13 14 | eqtr3di | ⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝑀 } ) ∩ { 𝑀 } ) = ∅ ) |
| 16 | difsnid | ⊢ ( 𝑀 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑀 } ) ∪ { 𝑀 } ) = 𝐴 ) | |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝑀 } ) ∪ { 𝑀 } ) = 𝐴 ) |
| 18 | 17 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∖ { 𝑀 } ) ∪ { 𝑀 } ) ) |
| 19 | 1 10 2 3 4 6 5 15 18 | gsumsplit2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∖ { 𝑀 } ) ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) ) |
| 20 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 22 | 1 21 7 8 9 | gsumsnd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∖ { 𝑀 } ) ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∖ { 𝑀 } ) ↦ 𝑋 ) ) + 𝑌 ) ) |
| 24 | 19 23 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∖ { 𝑀 } ) ↦ 𝑋 ) ) + 𝑌 ) ) |