This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumdifsnd.b | |- B = ( Base ` G ) |
|
| gsumdifsnd.p | |- .+ = ( +g ` G ) |
||
| gsumdifsnd.g | |- ( ph -> G e. CMnd ) |
||
| gsumdifsnd.a | |- ( ph -> A e. W ) |
||
| gsumdifsnd.f | |- ( ph -> ( k e. A |-> X ) finSupp ( 0g ` G ) ) |
||
| gsumdifsnd.e | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumdifsnd.m | |- ( ph -> M e. A ) |
||
| gsumdifsnd.y | |- ( ph -> Y e. B ) |
||
| gsumdifsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
||
| Assertion | gsumdifsnd | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdifsnd.b | |- B = ( Base ` G ) |
|
| 2 | gsumdifsnd.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumdifsnd.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumdifsnd.a | |- ( ph -> A e. W ) |
|
| 5 | gsumdifsnd.f | |- ( ph -> ( k e. A |-> X ) finSupp ( 0g ` G ) ) |
|
| 6 | gsumdifsnd.e | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 7 | gsumdifsnd.m | |- ( ph -> M e. A ) |
|
| 8 | gsumdifsnd.y | |- ( ph -> Y e. B ) |
|
| 9 | gsumdifsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
|
| 10 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 11 | 7 | snssd | |- ( ph -> { M } C_ A ) |
| 12 | difin2 | |- ( { M } C_ A -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) |
| 14 | difid | |- ( { M } \ { M } ) = (/) |
|
| 15 | 13 14 | eqtr3di | |- ( ph -> ( ( A \ { M } ) i^i { M } ) = (/) ) |
| 16 | difsnid | |- ( M e. A -> ( ( A \ { M } ) u. { M } ) = A ) |
|
| 17 | 7 16 | syl | |- ( ph -> ( ( A \ { M } ) u. { M } ) = A ) |
| 18 | 17 | eqcomd | |- ( ph -> A = ( ( A \ { M } ) u. { M } ) ) |
| 19 | 1 10 2 3 4 6 5 15 18 | gsumsplit2 | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) ) |
| 20 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 21 | 3 20 | syl | |- ( ph -> G e. Mnd ) |
| 22 | 1 21 7 8 9 | gsumsnd | |- ( ph -> ( G gsum ( k e. { M } |-> X ) ) = Y ) |
| 23 | 22 | oveq2d | |- ( ph -> ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |
| 24 | 19 23 | eqtrd | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |