This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumdifsnd.b | ||
| gsumdifsnd.p | |||
| gsumdifsnd.g | |||
| gsumdifsnd.a | |||
| gsumdifsnd.f | |||
| gsumdifsnd.e | |||
| gsumdifsnd.m | |||
| gsumdifsnd.y | |||
| gsumdifsnd.s | |||
| Assertion | gsumdifsnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdifsnd.b | ||
| 2 | gsumdifsnd.p | ||
| 3 | gsumdifsnd.g | ||
| 4 | gsumdifsnd.a | ||
| 5 | gsumdifsnd.f | ||
| 6 | gsumdifsnd.e | ||
| 7 | gsumdifsnd.m | ||
| 8 | gsumdifsnd.y | ||
| 9 | gsumdifsnd.s | ||
| 10 | eqid | ||
| 11 | 7 | snssd | |
| 12 | difin2 | ||
| 13 | 11 12 | syl | |
| 14 | difid | ||
| 15 | 13 14 | eqtr3di | |
| 16 | difsnid | ||
| 17 | 7 16 | syl | |
| 18 | 17 | eqcomd | |
| 19 | 1 10 2 3 4 6 5 15 18 | gsumsplit2 | |
| 20 | cmnmnd | ||
| 21 | 3 20 | syl | |
| 22 | 1 21 7 8 9 | gsumsnd | |
| 23 | 22 | oveq2d | |
| 24 | 19 23 | eqtrd |