This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsplit2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumsplit2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumsplit2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumsplit2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumsplit2.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumsplit2.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| gsumsplit2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| gsumsplit2.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | ||
| Assertion | gsumsplit2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsplit2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumsplit2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumsplit2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | gsumsplit2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumsplit2.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsumsplit2.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 8 | gsumsplit2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 9 | gsumsplit2.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | |
| 10 | 6 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐵 ) |
| 11 | 1 2 3 4 5 10 7 8 9 | gsumsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐶 ) ) + ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐷 ) ) ) ) |
| 12 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 13 | 12 9 | sseqtrrid | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 14 | 13 | resmptd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) |
| 16 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 17 | 16 9 | sseqtrrid | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 18 | 17 | resmptd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ 𝑋 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑋 ) ) ) |
| 20 | 15 19 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐶 ) ) + ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ↾ 𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑋 ) ) ) ) |
| 21 | 11 20 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑋 ) ) ) ) |