This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumccatsymgsn.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| gsumccatsymgsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | gsumccatsymgsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumccatsymgsn.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | gsumccatsymgsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 4 | 3 | grpmndd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 2 5 | gsumccatsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) |
| 7 | 4 6 | syl3an1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) |
| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 9 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑊 ∈ Word 𝐵 ) | |
| 10 | 2 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
| 12 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) | |
| 13 | 1 2 5 | symgov | ⊢ ( ( ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |
| 15 | 7 14 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |