This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumccatsymgsn.g | |- G = ( SymGrp ` A ) |
|
| gsumccatsymgsn.b | |- B = ( Base ` G ) |
||
| Assertion | gsumccatsymgsn | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) o. Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumccatsymgsn.g | |- G = ( SymGrp ` A ) |
|
| 2 | gsumccatsymgsn.b | |- B = ( Base ` G ) |
|
| 3 | 1 | symggrp | |- ( A e. V -> G e. Grp ) |
| 4 | 3 | grpmndd | |- ( A e. V -> G e. Mnd ) |
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 2 5 | gsumccatsn | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) ( +g ` G ) Z ) ) |
| 7 | 4 6 | syl3an1 | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) ( +g ` G ) Z ) ) |
| 8 | 4 | 3ad2ant1 | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> G e. Mnd ) |
| 9 | simp2 | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> W e. Word B ) |
|
| 10 | 2 | gsumwcl | |- ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B ) |
| 11 | 8 9 10 | syl2anc | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum W ) e. B ) |
| 12 | simp3 | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> Z e. B ) |
|
| 13 | 1 2 5 | symgov | |- ( ( ( G gsum W ) e. B /\ Z e. B ) -> ( ( G gsum W ) ( +g ` G ) Z ) = ( ( G gsum W ) o. Z ) ) |
| 14 | 11 12 13 | syl2anc | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( ( G gsum W ) ( +g ` G ) Z ) = ( ( G gsum W ) o. Z ) ) |
| 15 | 7 14 | eqtrd | |- ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) o. Z ) ) |