This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumccat.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumccat.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | gsumccatsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) + 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumccat.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumccat.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | s1cl | ⊢ ( 𝑍 ∈ 𝐵 → 〈“ 𝑍 ”〉 ∈ Word 𝐵 ) | |
| 4 | 1 2 | gsumccat | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 〈“ 𝑍 ”〉 ∈ Word 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 〈“ 𝑍 ”〉 ) ) ) |
| 5 | 3 4 | syl3an3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 〈“ 𝑍 ”〉 ) ) ) |
| 6 | 1 | gsumws1 | ⊢ ( 𝑍 ∈ 𝐵 → ( 𝐺 Σg 〈“ 𝑍 ”〉 ) = 𝑍 ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg 〈“ 𝑍 ”〉 ) = 𝑍 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) + ( 𝐺 Σg 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) + 𝑍 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) + 𝑍 ) ) |