This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grtriprop . (Contributed by AV, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grtriproplem | ⊢ ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | ⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → 𝑓 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } ) | |
| 2 | fvf1tp | ⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ) ) | |
| 3 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 0 ) = 𝑥 ) | |
| 4 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 1 ) = 𝑦 ) | |
| 5 | 3 4 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
| 6 | 5 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 7 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 2 ) = 𝑧 ) | |
| 8 | 3 7 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
| 9 | 8 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 10 | 4 7 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 11 | 10 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 12 | 6 9 11 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 13 | 12 | biimpd | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 14 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 0 ) = 𝑥 ) | |
| 15 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 1 ) = 𝑧 ) | |
| 16 | 14 15 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑥 , 𝑧 } ) |
| 17 | 16 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 18 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 2 ) = 𝑦 ) | |
| 19 | 14 18 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
| 20 | 19 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 21 | 15 18 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
| 22 | 21 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 23 | 17 20 22 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) ) |
| 24 | 3ancoma | ⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) | |
| 25 | prcom | ⊢ { 𝑧 , 𝑦 } = { 𝑦 , 𝑧 } | |
| 26 | 25 | eleq1i | ⊢ ( { 𝑧 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) |
| 27 | 26 | 3anbi3i | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 28 | 24 27 | sylbb | ⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 29 | 23 28 | biimtrdi | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 30 | 13 29 | jaoi | ⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 31 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 0 ) = 𝑦 ) | |
| 32 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 1 ) = 𝑥 ) | |
| 33 | 31 32 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑦 , 𝑥 } ) |
| 34 | 33 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 35 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 2 ) = 𝑧 ) | |
| 36 | 31 35 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 37 | 36 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 38 | 32 35 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
| 39 | 38 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 40 | 34 37 39 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) ) |
| 41 | 3ancomb | ⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) | |
| 42 | prcom | ⊢ { 𝑦 , 𝑥 } = { 𝑥 , 𝑦 } | |
| 43 | 42 | eleq1i | ⊢ ( { 𝑦 , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) |
| 44 | 43 | 3anbi1i | ⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 45 | 41 44 | sylbb | ⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 46 | 40 45 | biimtrdi | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 47 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 0 ) = 𝑦 ) | |
| 48 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 1 ) = 𝑧 ) | |
| 49 | 47 48 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑦 , 𝑧 } ) |
| 50 | 49 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 51 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 2 ) = 𝑥 ) | |
| 52 | 47 51 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
| 53 | 52 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 54 | 48 51 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
| 55 | 54 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 56 | 50 53 55 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) ) |
| 57 | 3anrot | ⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) | |
| 58 | prcom | ⊢ { 𝑧 , 𝑥 } = { 𝑥 , 𝑧 } | |
| 59 | 58 | eleq1i | ⊢ ( { 𝑧 , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) |
| 60 | biid | ⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) | |
| 61 | 43 59 60 | 3anbi123i | ⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 62 | 57 61 | sylbb | ⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 63 | 56 62 | biimtrdi | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 64 | 46 63 | jaoi | ⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 65 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 0 ) = 𝑧 ) | |
| 66 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 1 ) = 𝑥 ) | |
| 67 | 65 66 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑧 , 𝑥 } ) |
| 68 | 67 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 69 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 2 ) = 𝑦 ) | |
| 70 | 65 69 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
| 71 | 70 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 72 | 66 69 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
| 73 | 72 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 74 | 68 71 73 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
| 75 | 3anrot | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) | |
| 76 | prcom | ⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } | |
| 77 | 76 | eleq1i | ⊢ ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) |
| 78 | prcom | ⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } | |
| 79 | 78 | eleq1i | ⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) |
| 80 | biid | ⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) | |
| 81 | 77 79 80 | 3anbi123i | ⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 82 | 75 81 | sylbbr | ⊢ ( ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 83 | 74 82 | biimtrdi | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 84 | simp1 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 0 ) = 𝑧 ) | |
| 85 | simp2 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 1 ) = 𝑦 ) | |
| 86 | 84 85 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑧 , 𝑦 } ) |
| 87 | 86 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 88 | simp3 | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 2 ) = 𝑥 ) | |
| 89 | 84 88 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
| 90 | 89 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 91 | 85 88 | preq12d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
| 92 | 91 | eleq1d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 93 | 87 90 92 | 3anbi123d | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) ) |
| 94 | 3anrev | ⊢ ( ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) | |
| 95 | 43 59 26 | 3anbi123i | ⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 96 | 94 95 | sylbb | ⊢ ( ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 97 | 93 96 | biimtrdi | ⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 98 | 83 97 | jaoi | ⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 99 | 30 64 98 | 3jaoi | ⊢ ( ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 100 | 1 2 99 | 3syl | ⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 101 | 100 | imp | ⊢ ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |