This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values of a one-to-one function between two sets with three elements. Actually, such a function is a bijection. (Contributed by AV, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvf1tp | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 𝐹 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 , 𝑍 } ) | |
| 2 | 3nn | ⊢ 3 ∈ ℕ | |
| 3 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) | |
| 4 | 2 3 | mpbir | ⊢ 0 ∈ ( 0 ..^ 3 ) |
| 5 | 4 | a1i | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 0 ∈ ( 0 ..^ 3 ) ) |
| 6 | 1 5 | ffvelcdmd | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 1lt3 | ⊢ 1 < 3 | |
| 9 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) | |
| 10 | 7 2 8 9 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 3 ) |
| 11 | 10 | a1i | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 1 ∈ ( 0 ..^ 3 ) ) |
| 12 | 1 11 | ffvelcdmd | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 14 | 2lt3 | ⊢ 2 < 3 | |
| 15 | elfzo0 | ⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) | |
| 16 | 13 2 14 15 | mpbir3an | ⊢ 2 ∈ ( 0 ..^ 3 ) |
| 17 | 16 | a1i | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 2 ∈ ( 0 ..^ 3 ) ) |
| 18 | 1 17 | ffvelcdmd | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 19 | eltpi | ⊢ ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ) | |
| 20 | eltpi | ⊢ ( ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ) | |
| 21 | eltpi | ⊢ ( ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) | |
| 22 | 19 20 21 | 3anim123i | ⊢ ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) ) |
| 23 | eqeq2 | ⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 24 | 23 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 26 | f1veqaeq | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 1 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) | |
| 27 | 10 4 26 | mpanr12 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) |
| 28 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 29 | eqneqall | ⊢ ( 1 = 0 → ( 1 ≠ 0 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) | |
| 30 | 27 28 29 | syl6mpi | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 32 | 25 31 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 33 | eqeq2 | ⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 34 | 33 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 36 | 16 4 | pm3.2i | ⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) |
| 37 | 36 | a1i | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) |
| 38 | f1veqaeq | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) | |
| 39 | 37 38 | sylan2 | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
| 40 | 2ne0 | ⊢ 2 ≠ 0 | |
| 41 | eqneqall | ⊢ ( 2 = 0 → ( 2 ≠ 0 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) | |
| 42 | 39 40 41 | syl6mpi | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 43 | 35 42 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 45 | eqeq2 | ⊢ ( 𝑌 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) | |
| 46 | 45 | eqcoms | ⊢ ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 48 | 16 10 | pm3.2i | ⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) |
| 49 | 48 | a1i | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) |
| 50 | f1veqaeq | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) | |
| 51 | 49 50 | sylan2 | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
| 52 | 1ne2 | ⊢ 1 ≠ 2 | |
| 53 | 52 | necomi | ⊢ 2 ≠ 1 |
| 54 | eqneqall | ⊢ ( 2 = 1 → ( 2 ≠ 1 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) | |
| 55 | 51 53 54 | syl6mpi | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 57 | 47 56 | sylbid | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 58 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) | |
| 59 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) | |
| 60 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) | |
| 61 | 58 59 60 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
| 62 | 61 | orcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
| 63 | 62 | 3mix1d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 64 | 63 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 65 | 44 57 64 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 66 | 65 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 67 | 43 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 68 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) | |
| 69 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) | |
| 70 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) | |
| 71 | 68 69 70 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
| 72 | 71 | olcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
| 73 | 72 | 3mix1d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 74 | 73 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 75 | eqeq2 | ⊢ ( 𝑍 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) | |
| 76 | 75 | eqcoms | ⊢ ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 78 | 16 10 50 | mpanr12 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
| 79 | 78 53 54 | syl6mpi | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 82 | 77 81 | sylbid | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 83 | 67 74 82 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 84 | 83 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 85 | 32 66 84 | 3jaod | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 86 | 85 | ex | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 87 | eqeq2 | ⊢ ( 𝑋 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) | |
| 88 | 87 | eqcoms | ⊢ ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 89 | 88 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 90 | 79 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 92 | 89 91 | sylbid | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 93 | eqeq2 | ⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 94 | 93 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 95 | 94 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 96 | 16 4 38 | mpanr12 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
| 97 | 96 40 41 | syl6mpi | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 98 | 97 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 99 | 95 98 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 101 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) | |
| 102 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) | |
| 103 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) | |
| 104 | 101 102 103 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
| 105 | 104 | orcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 106 | 105 | 3mix2d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 107 | 106 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 108 | 92 100 107 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 109 | 108 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 110 | eqeq2 | ⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 111 | 110 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 112 | 111 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 113 | 30 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 114 | 112 113 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 115 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) | |
| 116 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) | |
| 117 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) | |
| 118 | 115 116 117 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
| 119 | 118 | olcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 120 | 119 | 3mix2d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 121 | 120 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 122 | 99 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 123 | 76 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 124 | 90 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 125 | 123 124 | sylbid | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 126 | 121 122 125 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 127 | 126 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 128 | 109 114 127 | 3jaod | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 129 | 128 | ex | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 130 | 88 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 131 | 79 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 132 | 130 131 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 133 | 132 | adantlr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 134 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) | |
| 135 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) | |
| 136 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) | |
| 137 | 134 135 136 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
| 138 | 137 | orcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 139 | 138 | 3mix3d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 140 | 139 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 141 | eqeq2 | ⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 142 | 141 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 143 | 142 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 144 | 97 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 145 | 143 144 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 146 | 145 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 147 | 133 140 146 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 148 | 147 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 149 | simpllr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) | |
| 150 | simplr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) | |
| 151 | simpr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) | |
| 152 | 149 150 151 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
| 153 | 152 | olcd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 154 | 153 | 3mix3d | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 155 | 154 | ex | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 156 | 46 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 157 | 79 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 158 | 157 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 159 | 156 158 | sylbid | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 160 | 145 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 161 | 155 159 160 | 3jaod | ⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 162 | 161 | ex | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 163 | eqeq2 | ⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) | |
| 164 | 163 | eqcoms | ⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 165 | 164 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 166 | 30 | adantr | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 167 | 165 166 | sylbid | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 168 | 148 162 167 | 3jaod | ⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 169 | 168 | ex | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 170 | 86 129 169 | 3jaod | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 171 | 170 | 3impd | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 172 | 22 171 | syl5 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 173 | 6 12 18 172 | mp3and | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |