This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grtriprop . (Contributed by AV, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grtriproplem | |- ( ( f : ( 0 ..^ 3 ) -1-1-onto-> { x , y , z } /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | |- ( f : ( 0 ..^ 3 ) -1-1-onto-> { x , y , z } -> f : ( 0 ..^ 3 ) -1-1-> { x , y , z } ) |
|
| 2 | fvf1tp | |- ( f : ( 0 ..^ 3 ) -1-1-> { x , y , z } -> ( ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) ) \/ ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) ) \/ ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) \/ ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) ) ) ) |
|
| 3 | simp1 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( f ` 0 ) = x ) |
|
| 4 | simp2 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( f ` 1 ) = y ) |
|
| 5 | 3 4 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> { ( f ` 0 ) , ( f ` 1 ) } = { x , y } ) |
| 6 | 5 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { x , y } e. E ) ) |
| 7 | simp3 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( f ` 2 ) = z ) |
|
| 8 | 3 7 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> { ( f ` 0 ) , ( f ` 2 ) } = { x , z } ) |
| 9 | 8 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { x , z } e. E ) ) |
| 10 | 4 7 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> { ( f ` 1 ) , ( f ` 2 ) } = { y , z } ) |
| 11 | 10 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { y , z } e. E ) ) |
| 12 | 6 9 11 | 3anbi123d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 13 | 12 | biimpd | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 14 | simp1 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( f ` 0 ) = x ) |
|
| 15 | simp2 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( f ` 1 ) = z ) |
|
| 16 | 14 15 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> { ( f ` 0 ) , ( f ` 1 ) } = { x , z } ) |
| 17 | 16 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { x , z } e. E ) ) |
| 18 | simp3 | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( f ` 2 ) = y ) |
|
| 19 | 14 18 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> { ( f ` 0 ) , ( f ` 2 ) } = { x , y } ) |
| 20 | 19 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { x , y } e. E ) ) |
| 21 | 15 18 | preq12d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> { ( f ` 1 ) , ( f ` 2 ) } = { z , y } ) |
| 22 | 21 | eleq1d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { z , y } e. E ) ) |
| 23 | 17 20 22 | 3anbi123d | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { x , z } e. E /\ { x , y } e. E /\ { z , y } e. E ) ) ) |
| 24 | 3ancoma | |- ( ( { x , z } e. E /\ { x , y } e. E /\ { z , y } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { z , y } e. E ) ) |
|
| 25 | prcom | |- { z , y } = { y , z } |
|
| 26 | 25 | eleq1i | |- ( { z , y } e. E <-> { y , z } e. E ) |
| 27 | 26 | 3anbi3i | |- ( ( { x , y } e. E /\ { x , z } e. E /\ { z , y } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 28 | 24 27 | sylbb | |- ( ( { x , z } e. E /\ { x , y } e. E /\ { z , y } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 29 | 23 28 | biimtrdi | |- ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 30 | 13 29 | jaoi | |- ( ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 31 | simp1 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( f ` 0 ) = y ) |
|
| 32 | simp2 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( f ` 1 ) = x ) |
|
| 33 | 31 32 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> { ( f ` 0 ) , ( f ` 1 ) } = { y , x } ) |
| 34 | 33 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { y , x } e. E ) ) |
| 35 | simp3 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( f ` 2 ) = z ) |
|
| 36 | 31 35 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> { ( f ` 0 ) , ( f ` 2 ) } = { y , z } ) |
| 37 | 36 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { y , z } e. E ) ) |
| 38 | 32 35 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> { ( f ` 1 ) , ( f ` 2 ) } = { x , z } ) |
| 39 | 38 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { x , z } e. E ) ) |
| 40 | 34 37 39 | 3anbi123d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { y , x } e. E /\ { y , z } e. E /\ { x , z } e. E ) ) ) |
| 41 | 3ancomb | |- ( ( { y , x } e. E /\ { y , z } e. E /\ { x , z } e. E ) <-> ( { y , x } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
|
| 42 | prcom | |- { y , x } = { x , y } |
|
| 43 | 42 | eleq1i | |- ( { y , x } e. E <-> { x , y } e. E ) |
| 44 | 43 | 3anbi1i | |- ( ( { y , x } e. E /\ { x , z } e. E /\ { y , z } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 45 | 41 44 | sylbb | |- ( ( { y , x } e. E /\ { y , z } e. E /\ { x , z } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 46 | 40 45 | biimtrdi | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 47 | simp1 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( f ` 0 ) = y ) |
|
| 48 | simp2 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( f ` 1 ) = z ) |
|
| 49 | 47 48 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> { ( f ` 0 ) , ( f ` 1 ) } = { y , z } ) |
| 50 | 49 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { y , z } e. E ) ) |
| 51 | simp3 | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( f ` 2 ) = x ) |
|
| 52 | 47 51 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> { ( f ` 0 ) , ( f ` 2 ) } = { y , x } ) |
| 53 | 52 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { y , x } e. E ) ) |
| 54 | 48 51 | preq12d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> { ( f ` 1 ) , ( f ` 2 ) } = { z , x } ) |
| 55 | 54 | eleq1d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { z , x } e. E ) ) |
| 56 | 50 53 55 | 3anbi123d | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { y , z } e. E /\ { y , x } e. E /\ { z , x } e. E ) ) ) |
| 57 | 3anrot | |- ( ( { y , z } e. E /\ { y , x } e. E /\ { z , x } e. E ) <-> ( { y , x } e. E /\ { z , x } e. E /\ { y , z } e. E ) ) |
|
| 58 | prcom | |- { z , x } = { x , z } |
|
| 59 | 58 | eleq1i | |- ( { z , x } e. E <-> { x , z } e. E ) |
| 60 | biid | |- ( { y , z } e. E <-> { y , z } e. E ) |
|
| 61 | 43 59 60 | 3anbi123i | |- ( ( { y , x } e. E /\ { z , x } e. E /\ { y , z } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 62 | 57 61 | sylbb | |- ( ( { y , z } e. E /\ { y , x } e. E /\ { z , x } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 63 | 56 62 | biimtrdi | |- ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 64 | 46 63 | jaoi | |- ( ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 65 | simp1 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( f ` 0 ) = z ) |
|
| 66 | simp2 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( f ` 1 ) = x ) |
|
| 67 | 65 66 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> { ( f ` 0 ) , ( f ` 1 ) } = { z , x } ) |
| 68 | 67 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { z , x } e. E ) ) |
| 69 | simp3 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( f ` 2 ) = y ) |
|
| 70 | 65 69 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> { ( f ` 0 ) , ( f ` 2 ) } = { z , y } ) |
| 71 | 70 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { z , y } e. E ) ) |
| 72 | 66 69 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> { ( f ` 1 ) , ( f ` 2 ) } = { x , y } ) |
| 73 | 72 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { x , y } e. E ) ) |
| 74 | 68 71 73 | 3anbi123d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { z , x } e. E /\ { z , y } e. E /\ { x , y } e. E ) ) ) |
| 75 | 3anrot | |- ( ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) <-> ( { x , z } e. E /\ { y , z } e. E /\ { x , y } e. E ) ) |
|
| 76 | prcom | |- { x , z } = { z , x } |
|
| 77 | 76 | eleq1i | |- ( { x , z } e. E <-> { z , x } e. E ) |
| 78 | prcom | |- { y , z } = { z , y } |
|
| 79 | 78 | eleq1i | |- ( { y , z } e. E <-> { z , y } e. E ) |
| 80 | biid | |- ( { x , y } e. E <-> { x , y } e. E ) |
|
| 81 | 77 79 80 | 3anbi123i | |- ( ( { x , z } e. E /\ { y , z } e. E /\ { x , y } e. E ) <-> ( { z , x } e. E /\ { z , y } e. E /\ { x , y } e. E ) ) |
| 82 | 75 81 | sylbbr | |- ( ( { z , x } e. E /\ { z , y } e. E /\ { x , y } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 83 | 74 82 | biimtrdi | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 84 | simp1 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( f ` 0 ) = z ) |
|
| 85 | simp2 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( f ` 1 ) = y ) |
|
| 86 | 84 85 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> { ( f ` 0 ) , ( f ` 1 ) } = { z , y } ) |
| 87 | 86 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( { ( f ` 0 ) , ( f ` 1 ) } e. E <-> { z , y } e. E ) ) |
| 88 | simp3 | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( f ` 2 ) = x ) |
|
| 89 | 84 88 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> { ( f ` 0 ) , ( f ` 2 ) } = { z , x } ) |
| 90 | 89 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( { ( f ` 0 ) , ( f ` 2 ) } e. E <-> { z , x } e. E ) ) |
| 91 | 85 88 | preq12d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> { ( f ` 1 ) , ( f ` 2 ) } = { y , x } ) |
| 92 | 91 | eleq1d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( { ( f ` 1 ) , ( f ` 2 ) } e. E <-> { y , x } e. E ) ) |
| 93 | 87 90 92 | 3anbi123d | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) <-> ( { z , y } e. E /\ { z , x } e. E /\ { y , x } e. E ) ) ) |
| 94 | 3anrev | |- ( ( { z , y } e. E /\ { z , x } e. E /\ { y , x } e. E ) <-> ( { y , x } e. E /\ { z , x } e. E /\ { z , y } e. E ) ) |
|
| 95 | 43 59 26 | 3anbi123i | |- ( ( { y , x } e. E /\ { z , x } e. E /\ { z , y } e. E ) <-> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 96 | 94 95 | sylbb | |- ( ( { z , y } e. E /\ { z , x } e. E /\ { y , x } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |
| 97 | 93 96 | biimtrdi | |- ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 98 | 83 97 | jaoi | |- ( ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) \/ ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 99 | 30 64 98 | 3jaoi | |- ( ( ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = x /\ ( f ` 1 ) = z /\ ( f ` 2 ) = y ) ) \/ ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x /\ ( f ` 2 ) = z ) \/ ( ( f ` 0 ) = y /\ ( f ` 1 ) = z /\ ( f ` 2 ) = x ) ) \/ ( ( ( f ` 0 ) = z /\ ( f ` 1 ) = x /\ ( f ` 2 ) = y ) \/ ( ( f ` 0 ) = z /\ ( f ` 1 ) = y /\ ( f ` 2 ) = x ) ) ) -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 100 | 1 2 99 | 3syl | |- ( f : ( 0 ..^ 3 ) -1-1-onto-> { x , y , z } -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) |
| 101 | 100 | imp | |- ( ( f : ( 0 ..^ 3 ) -1-1-onto-> { x , y , z } /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) -> ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) |