This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group division. ( npcan analog.) (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grponpcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 4 | 1 3 2 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) ) |
| 6 | simp1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) | |
| 7 | simp2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 8 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 10 | simp3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 11 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) |
| 12 | 6 7 9 10 11 | syl13anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) |
| 13 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 14 | 1 13 3 | grpolinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) = ( GId ‘ 𝐺 ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 17 | 1 13 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = 𝐴 ) |
| 20 | 12 19 | eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = 𝐴 ) |
| 21 | 5 20 | eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |