This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group division. ( npcan analog.) (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | |- X = ran G |
|
| grpdivf.3 | |- D = ( /g ` G ) |
||
| Assertion | grponpcan | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | |- X = ran G |
|
| 2 | grpdivf.3 | |- D = ( /g ` G ) |
|
| 3 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 4 | 1 3 2 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 5 | 4 | oveq1d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = ( ( A G ( ( inv ` G ) ` B ) ) G B ) ) |
| 6 | simp1 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) |
|
| 7 | simp2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 8 | 1 3 | grpoinvcl | |- ( ( G e. GrpOp /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) |
| 9 | 8 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) |
| 10 | simp3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 11 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ ( ( inv ` G ) ` B ) e. X /\ B e. X ) ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) |
| 12 | 6 7 9 10 11 | syl13anc | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) |
| 13 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 14 | 1 13 3 | grpolinv | |- ( ( G e. GrpOp /\ B e. X ) -> ( ( ( inv ` G ) ` B ) G B ) = ( GId ` G ) ) |
| 15 | 14 | oveq2d | |- ( ( G e. GrpOp /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) |
| 16 | 15 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) |
| 17 | 1 13 | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 18 | 17 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 19 | 16 18 | eqtrd | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = A ) |
| 20 | 12 19 | eqtrd | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = A ) |
| 21 | 5 20 | eqtrd | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |