This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grplcan.1 | |- X = ran G |
|
| Assertion | grpolcan | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.1 | |- X = ran G |
|
| 2 | oveq2 | |- ( ( C G A ) = ( C G B ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) |
|
| 3 | 2 | adantl | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) |
| 4 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 5 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 6 | 1 4 5 | grpolinv | |- ( ( G e. GrpOp /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) |
| 7 | 6 | adantlr | |- ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) |
| 8 | 7 | oveq1d | |- ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( GId ` G ) G A ) ) |
| 9 | 1 5 | grpoinvcl | |- ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 10 | 9 | adantrl | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
| 11 | simprr | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> C e. X ) |
|
| 12 | simprl | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> A e. X ) |
|
| 13 | 10 11 12 | 3jca | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ A e. X ) ) |
| 14 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ A e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) |
| 15 | 13 14 | syldan | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) |
| 16 | 15 | anassrs | |- ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) |
| 17 | 1 4 | grpolid | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G A ) = A ) |
| 18 | 17 | adantr | |- ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( GId ` G ) G A ) = A ) |
| 19 | 8 16 18 | 3eqtr3d | |- ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) |
| 20 | 19 | adantrl | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) |
| 21 | 20 | adantr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) |
| 22 | 6 | adantrl | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) |
| 23 | 22 | oveq1d | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( GId ` G ) G B ) ) |
| 24 | 9 | adantrl | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
| 25 | simprr | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> C e. X ) |
|
| 26 | simprl | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> B e. X ) |
|
| 27 | 24 25 26 | 3jca | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ B e. X ) ) |
| 28 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ B e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) |
| 29 | 27 28 | syldan | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) |
| 30 | 1 4 | grpolid | |- ( ( G e. GrpOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 31 | 30 | adantrr | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( GId ` G ) G B ) = B ) |
| 32 | 23 29 31 | 3eqtr3d | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) |
| 33 | 32 | adantlr | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) |
| 34 | 33 | adantr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) |
| 35 | 3 21 34 | 3eqtr3d | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> A = B ) |
| 36 | 35 | exp53 | |- ( G e. GrpOp -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( C G A ) = ( C G B ) -> A = B ) ) ) ) ) |
| 37 | 36 | 3imp2 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) -> A = B ) ) |
| 38 | oveq2 | |- ( A = B -> ( C G A ) = ( C G B ) ) |
|
| 39 | 37 38 | impbid1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) ) |