This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.1 | ||
| grpinvcl.2 | |||
| Assertion | grpoinvcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.1 | ||
| 2 | grpinvcl.2 | ||
| 3 | eqid | ||
| 4 | 1 3 2 | grpoinvval | |
| 5 | 1 3 | grpoinveu | |
| 6 | riotacl | ||
| 7 | 5 6 | syl | |
| 8 | 4 7 | eqeltrd |