This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidssd.m | ⊢ ( 𝜑 → 𝑀 ∈ Grp ) | |
| grpidssd.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | ||
| grpidssd.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| grpidssd.c | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑀 ) ) | ||
| grpidssd.o | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | grpinvssd | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.m | ⊢ ( 𝜑 → 𝑀 ∈ Grp ) | |
| 2 | grpidssd.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | |
| 3 | grpidssd.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | grpidssd.c | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑀 ) ) | |
| 5 | grpidssd.o | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 6 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 7 | 3 6 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 2 7 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 12 | oveq1 | ⊢ ( 𝑥 = ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥 = ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑦 = 𝑋 → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑦 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) ) ) |
| 17 | 13 16 | rspc2va | ⊢ ( ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) ) |
| 18 | 8 9 10 17 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) ) |
| 19 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 21 | 3 19 20 6 | grplinv | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) |
| 22 | 2 21 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) |
| 23 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑀 ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 25 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 26 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 27 | eqid | ⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) | |
| 28 | 24 25 26 27 | grplinv | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 29 | 1 23 28 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 30 | 1 2 3 4 5 | grpidssd | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑆 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑆 ) ) |
| 32 | 29 31 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝑆 ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 33 | 18 22 32 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 34 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑀 ∈ Grp ) |
| 35 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝐵 ⊆ ( Base ‘ 𝑀 ) ) |
| 36 | 35 8 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑀 ) ) |
| 37 | 24 27 | grpinvcl | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑀 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑀 ) ) |
| 38 | 1 23 37 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑀 ) ) |
| 39 | 24 25 | grprcan | ⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑀 ) ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑀 ) ∧ 𝑋 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ) ) |
| 40 | 34 36 38 23 39 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ) ) |
| 41 | 33 40 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ) |
| 42 | 41 | ex | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → ( ( invg ‘ 𝑆 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ 𝑋 ) ) ) |