This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidssd.m | |- ( ph -> M e. Grp ) |
|
| grpidssd.s | |- ( ph -> S e. Grp ) |
||
| grpidssd.b | |- B = ( Base ` S ) |
||
| grpidssd.c | |- ( ph -> B C_ ( Base ` M ) ) |
||
| grpidssd.o | |- ( ph -> A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | grpinvssd | |- ( ph -> ( X e. B -> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.m | |- ( ph -> M e. Grp ) |
|
| 2 | grpidssd.s | |- ( ph -> S e. Grp ) |
|
| 3 | grpidssd.b | |- B = ( Base ` S ) |
|
| 4 | grpidssd.c | |- ( ph -> B C_ ( Base ` M ) ) |
|
| 5 | grpidssd.o | |- ( ph -> A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) |
|
| 6 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 7 | 3 6 | grpinvcl | |- ( ( S e. Grp /\ X e. B ) -> ( ( invg ` S ) ` X ) e. B ) |
| 8 | 2 7 | sylan | |- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) e. B ) |
| 9 | simpr | |- ( ( ph /\ X e. B ) -> X e. B ) |
|
| 10 | 5 | adantr | |- ( ( ph /\ X e. B ) -> A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) |
| 11 | oveq1 | |- ( x = ( ( invg ` S ) ` X ) -> ( x ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) ) |
|
| 12 | oveq1 | |- ( x = ( ( invg ` S ) ` X ) -> ( x ( +g ` S ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( x = ( ( invg ` S ) ` X ) -> ( ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) <-> ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) ) ) |
| 14 | oveq2 | |- ( y = X -> ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) ) |
|
| 15 | oveq2 | |- ( y = X -> ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( y = X -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) y ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) y ) <-> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) ) |
| 17 | 13 16 | rspc2va | |- ( ( ( ( ( invg ` S ) ` X ) e. B /\ X e. B ) /\ A. x e. B A. y e. B ( x ( +g ` M ) y ) = ( x ( +g ` S ) y ) ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
| 18 | 8 9 10 17 | syl21anc | |- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) ) |
| 19 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 20 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 21 | 3 19 20 6 | grplinv | |- ( ( S e. Grp /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
| 22 | 2 21 | sylan | |- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
| 23 | 4 | sselda | |- ( ( ph /\ X e. B ) -> X e. ( Base ` M ) ) |
| 24 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 25 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 26 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 27 | eqid | |- ( invg ` M ) = ( invg ` M ) |
|
| 28 | 24 25 26 27 | grplinv | |- ( ( M e. Grp /\ X e. ( Base ` M ) ) -> ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) = ( 0g ` M ) ) |
| 29 | 1 23 28 | syl2an2r | |- ( ( ph /\ X e. B ) -> ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) = ( 0g ` M ) ) |
| 30 | 1 2 3 4 5 | grpidssd | |- ( ph -> ( 0g ` M ) = ( 0g ` S ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ X e. B ) -> ( 0g ` M ) = ( 0g ` S ) ) |
| 32 | 29 31 | eqtr2d | |- ( ( ph /\ X e. B ) -> ( 0g ` S ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) ) |
| 33 | 18 22 32 | 3eqtrd | |- ( ( ph /\ X e. B ) -> ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) ) |
| 34 | 1 | adantr | |- ( ( ph /\ X e. B ) -> M e. Grp ) |
| 35 | 4 | adantr | |- ( ( ph /\ X e. B ) -> B C_ ( Base ` M ) ) |
| 36 | 35 8 | sseldd | |- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) e. ( Base ` M ) ) |
| 37 | 24 27 | grpinvcl | |- ( ( M e. Grp /\ X e. ( Base ` M ) ) -> ( ( invg ` M ) ` X ) e. ( Base ` M ) ) |
| 38 | 1 23 37 | syl2an2r | |- ( ( ph /\ X e. B ) -> ( ( invg ` M ) ` X ) e. ( Base ` M ) ) |
| 39 | 24 25 | grprcan | |- ( ( M e. Grp /\ ( ( ( invg ` S ) ` X ) e. ( Base ` M ) /\ ( ( invg ` M ) ` X ) e. ( Base ` M ) /\ X e. ( Base ` M ) ) ) -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) <-> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |
| 40 | 34 36 38 23 39 | syl13anc | |- ( ( ph /\ X e. B ) -> ( ( ( ( invg ` S ) ` X ) ( +g ` M ) X ) = ( ( ( invg ` M ) ` X ) ( +g ` M ) X ) <-> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |
| 41 | 33 40 | mpbid | |- ( ( ph /\ X e. B ) -> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) |
| 42 | 41 | ex | |- ( ph -> ( X e. B -> ( ( invg ` S ) ` X ) = ( ( invg ` M ) ` X ) ) ) |