This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvnzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvnzcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinvnzcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvnzcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvnzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvnzcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | grpinvnzcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 7 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) | |
| 8 | 1 2 3 | grpinvnz | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
| 10 | 7 9 | sylan2b | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
| 11 | eldifsn | ⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ≠ 0 ) ) | |
| 12 | 6 10 11 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |