This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvnzcl.b | ||
| grpinvnzcl.z | |||
| grpinvnzcl.n | |||
| Assertion | grpinvnzcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvnzcl.b | ||
| 2 | grpinvnzcl.z | ||
| 3 | grpinvnzcl.n | ||
| 4 | eldifi | ||
| 5 | 1 3 | grpinvcl | |
| 6 | 4 5 | sylan2 | |
| 7 | eldifsn | ||
| 8 | 1 2 3 | grpinvnz | |
| 9 | 8 | 3expb | |
| 10 | 7 9 | sylan2b | |
| 11 | eldifsn | ||
| 12 | 6 10 11 | sylanbrc |