This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvnzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvnzcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinvnzcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvnz | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvnzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvnzcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | grpinvnzcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | fveq2 | ⊢ ( ( 𝑁 ‘ 𝑋 ) = 0 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 0 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 0 ) ) |
| 6 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 8 | 2 3 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ 0 ) = 0 ) |
| 10 | 5 7 9 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → 𝑋 = 0 ) |
| 11 | 10 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 0 → 𝑋 = 0 ) ) |
| 12 | 11 | necon3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≠ 0 → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) ) |
| 13 | 12 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |