This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvnzcl.b | |- B = ( Base ` G ) |
|
| grpinvnzcl.z | |- .0. = ( 0g ` G ) |
||
| grpinvnzcl.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvnzcl | |- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. ( B \ { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvnzcl.b | |- B = ( Base ` G ) |
|
| 2 | grpinvnzcl.z | |- .0. = ( 0g ` G ) |
|
| 3 | grpinvnzcl.n | |- N = ( invg ` G ) |
|
| 4 | eldifi | |- ( X e. ( B \ { .0. } ) -> X e. B ) |
|
| 5 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 6 | 4 5 | sylan2 | |- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. B ) |
| 7 | eldifsn | |- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
|
| 8 | 1 2 3 | grpinvnz | |- ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. ) |
| 9 | 8 | 3expb | |- ( ( G e. Grp /\ ( X e. B /\ X =/= .0. ) ) -> ( N ` X ) =/= .0. ) |
| 10 | 7 9 | sylan2b | |- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) =/= .0. ) |
| 11 | eldifsn | |- ( ( N ` X ) e. ( B \ { .0. } ) <-> ( ( N ` X ) e. B /\ ( N ` X ) =/= .0. ) ) |
|
| 12 | 6 10 11 | sylanbrc | |- ( ( G e. Grp /\ X e. ( B \ { .0. } ) ) -> ( N ` X ) e. ( B \ { .0. } ) ) |