This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | |- B = ( Base ` G ) |
|
| grpinvinv.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvcnv | |- ( G e. Grp -> `' N = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinvinv.n | |- N = ( invg ` G ) |
|
| 3 | eqid | |- ( x e. B |-> ( N ` x ) ) = ( x e. B |-> ( N ` x ) ) |
|
| 4 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ x e. B ) -> ( N ` x ) e. B ) |
| 5 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ y e. B ) -> ( N ` y ) e. B ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 1 6 7 2 | grpinvid1 | |- ( ( G e. Grp /\ y e. B /\ x e. B ) -> ( ( N ` y ) = x <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 | 8 | 3com23 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` y ) = x <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 10 | 1 6 7 2 | grpinvid2 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` x ) = y <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 11 | 9 10 | bitr4d | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( N ` y ) = x <-> ( N ` x ) = y ) ) |
| 12 | 11 | 3expb | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( N ` y ) = x <-> ( N ` x ) = y ) ) |
| 13 | eqcom | |- ( x = ( N ` y ) <-> ( N ` y ) = x ) |
|
| 14 | eqcom | |- ( y = ( N ` x ) <-> ( N ` x ) = y ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( x = ( N ` y ) <-> y = ( N ` x ) ) ) |
| 16 | 3 4 5 15 | f1ocnv2d | |- ( G e. Grp -> ( ( x e. B |-> ( N ` x ) ) : B -1-1-onto-> B /\ `' ( x e. B |-> ( N ` x ) ) = ( y e. B |-> ( N ` y ) ) ) ) |
| 17 | 16 | simprd | |- ( G e. Grp -> `' ( x e. B |-> ( N ` x ) ) = ( y e. B |-> ( N ` y ) ) ) |
| 18 | 1 2 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| 19 | 18 | feqmptd | |- ( G e. Grp -> N = ( x e. B |-> ( N ` x ) ) ) |
| 20 | 19 | cnveqd | |- ( G e. Grp -> `' N = `' ( x e. B |-> ( N ` x ) ) ) |
| 21 | 18 | feqmptd | |- ( G e. Grp -> N = ( y e. B |-> ( N ` y ) ) ) |
| 22 | 17 20 21 | 3eqtr4d | |- ( G e. Grp -> `' N = N ) |