This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpinva . (Contributed by NM, 9-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| grpinva.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) | ||
| grpinva.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 + 𝑥 ) = 𝑥 ) | ||
| grpinva.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| grpinva.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ) | ||
| grpinvalem.x | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ 𝐵 ) | ||
| grpinvalem.e | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) | ||
| Assertion | grpinvalem | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 = 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 2 | grpinva.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) | |
| 3 | grpinva.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 + 𝑥 ) = 𝑥 ) | |
| 4 | grpinva.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 5 | grpinva.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ) | |
| 6 | grpinvalem.x | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | grpinvalem.e | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) | |
| 8 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ) |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝑧 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 + 𝑥 ) = 𝑂 ↔ ( 𝑦 + 𝑧 ) = 𝑂 ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑧 ) = 𝑂 ) ) |
| 12 | 11 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 𝑂 ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑧 ) = 𝑂 ) |
| 13 | 8 12 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑧 ) = 𝑂 ) |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝑋 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑦 + 𝑧 ) = 𝑂 ↔ ( 𝑦 + 𝑋 ) = 𝑂 ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑧 ) = 𝑂 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 𝑂 ) ) |
| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑧 ) = 𝑂 ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 𝑂 ) |
| 18 | 13 6 17 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 𝑂 ) |
| 19 | 7 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑦 + ( 𝑋 + 𝑋 ) ) = ( 𝑦 + 𝑋 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( 𝑦 + ( 𝑋 + 𝑋 ) ) = ( 𝑦 + 𝑋 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( 𝑦 + 𝑋 ) = 𝑂 ) | |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( ( 𝑦 + 𝑋 ) + 𝑋 ) = ( 𝑂 + 𝑋 ) ) |
| 23 | 4 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 24 | 23 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 25 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → 𝑦 ∈ 𝐵 ) | |
| 26 | 6 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → 𝑋 ∈ 𝐵 ) |
| 27 | 24 25 26 26 | caovassd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( ( 𝑦 + 𝑋 ) + 𝑋 ) = ( 𝑦 + ( 𝑋 + 𝑋 ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑂 + 𝑦 ) = ( 𝑂 + 𝑋 ) ) | |
| 29 | id | ⊢ ( 𝑦 = 𝑋 → 𝑦 = 𝑋 ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑂 + 𝑦 ) = 𝑦 ↔ ( 𝑂 + 𝑋 ) = 𝑋 ) ) |
| 31 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑂 + 𝑥 ) = 𝑥 ) |
| 32 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑂 + 𝑥 ) = ( 𝑂 + 𝑦 ) ) | |
| 33 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 + 𝑥 ) = 𝑥 ↔ ( 𝑂 + 𝑦 ) = 𝑦 ) ) |
| 35 | 34 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑂 + 𝑥 ) = 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑂 + 𝑦 ) = 𝑦 ) |
| 36 | 31 35 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑂 + 𝑦 ) = 𝑦 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑂 + 𝑦 ) = 𝑦 ) |
| 38 | 30 37 6 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑂 + 𝑋 ) = 𝑋 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( 𝑂 + 𝑋 ) = 𝑋 ) |
| 40 | 22 27 39 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → ( 𝑦 + ( 𝑋 + 𝑋 ) ) = 𝑋 ) |
| 41 | 20 40 21 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑋 ) = 𝑂 ) ) → 𝑋 = 𝑂 ) |
| 42 | 18 41 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 = 𝑂 ) |