This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | ||
| grpinveu.p | |||
| grpinveu.o | |||
| Assertion | grpid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | ||
| 2 | grpinveu.p | ||
| 3 | grpinveu.o | ||
| 4 | eqcom | ||
| 5 | 1 3 | grpidcl | |
| 6 | 1 2 | grprcan | |
| 7 | 6 | 3exp2 | |
| 8 | 5 7 | mpid | |
| 9 | 8 | pm2.43d | |
| 10 | 9 | imp | |
| 11 | 1 2 3 | grplid | |
| 12 | 11 | eqeq2d | |
| 13 | 10 12 | bitr3d | |
| 14 | 4 13 | bitr2id |