This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex connected by an edge with another vertex is a neighbor of that vertex. (Contributed by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| clnbgredg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | ||
| Assertion | clnbgredg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | clnbgredg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | 3 | biimpi | ⊢ ( 𝐾 ∈ 𝐸 → 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 6 | simp3 | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ∈ 𝐾 ) | |
| 7 | 5 6 | jca | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) |
| 8 | 7 | anim2i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) ) |
| 9 | 3anass | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ↔ ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) ) |
| 11 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
| 13 | simp2 | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 14 | 5 13 | jca | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) |
| 15 | 14 | anim2i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) ) |
| 16 | 3anass | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ↔ ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) ) |
| 18 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐾 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
| 20 | simpr1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝐾 ∈ 𝐸 ) | |
| 21 | sseq2 | ⊢ ( 𝑒 = 𝐾 → ( { 𝑋 , 𝑌 } ⊆ 𝑒 ↔ { 𝑋 , 𝑌 } ⊆ 𝐾 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) ∧ 𝑒 = 𝐾 ) → ( { 𝑋 , 𝑌 } ⊆ 𝑒 ↔ { 𝑋 , 𝑌 } ⊆ 𝐾 ) ) |
| 23 | prssi | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) | |
| 24 | 23 | 3adant1 | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → { 𝑋 , 𝑌 } ⊆ 𝐾 ) |
| 26 | 20 22 25 | rspcedvd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) |
| 27 | 26 | olcd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝑌 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) ) |
| 28 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 29 | 28 1 | clnbgrel | ⊢ ( 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑌 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑌 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑌 } ⊆ 𝑒 ) ) ) |
| 30 | 12 19 27 29 | syl21anbrc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 31 | 2 | eleq2i | ⊢ ( 𝑌 ∈ 𝑁 ↔ 𝑌 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑌 ∈ 𝑁 ) |