This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbprop.u | ⊢ 𝑈 = ( glb ‘ 𝐾 ) | ||
| glbprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| glbprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | ||
| Assertion | glbprop | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbprop.u | ⊢ 𝑈 = ( glb ‘ 𝐾 ) | |
| 4 | glbprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | glbprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | |
| 6 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 7 | 1 2 3 4 5 | glbelss | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 8 | 1 2 3 6 4 7 | glbval | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( 𝑈 ‘ 𝑆 ) ) |
| 10 | 1 3 4 5 | glbcl | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 11 | 1 2 3 6 4 5 | glbeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 12 | breq1 | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ) ) | |
| 13 | 12 | ralbidv | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ) ) |
| 14 | breq2 | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) | |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |
| 17 | 13 16 | anbi12d | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) ) |
| 18 | 17 | riota2 | ⊢ ( ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) → ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ↔ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( 𝑈 ‘ 𝑆 ) ) ) |
| 19 | 10 11 18 | syl2anc | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ↔ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( 𝑈 ‘ 𝑆 ) ) ) |
| 20 | 9 19 | mpbird | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |