This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbprop.u | ⊢ 𝑈 = ( glb ‘ 𝐾 ) | ||
| glbprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| glbprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | ||
| glble.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| Assertion | glble | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbprop.u | ⊢ 𝑈 = ( glb ‘ 𝐾 ) | |
| 4 | glbprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | glbprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | |
| 6 | glble.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 7 | breq2 | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ↔ ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) | |
| 8 | 1 2 3 4 5 | glbprop | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ) |
| 10 | 7 9 6 | rspcdva | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) |