This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for glbprdm and glbpr . (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | ||
| glbpr.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | glbprlem | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑆 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 2 | lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 6 | lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 7 | lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | |
| 8 | glbpr.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
| 10 | 9 | odupos | ⊢ ( 𝐾 ∈ Poset → ( ODual ‘ 𝐾 ) ∈ Poset ) |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Poset ) |
| 12 | 9 2 | odubas | ⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
| 13 | 9 5 | oduleval | ⊢ ◡ ≤ = ( le ‘ ( ODual ‘ 𝐾 ) ) |
| 14 | brcnvg | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 15 | 4 3 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 ◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) |
| 16 | 6 15 | mpbird | ⊢ ( 𝜑 → 𝑌 ◡ ≤ 𝑋 ) |
| 17 | prcom | ⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } | |
| 18 | 7 17 | eqtrdi | ⊢ ( 𝜑 → 𝑆 = { 𝑌 , 𝑋 } ) |
| 19 | eqid | ⊢ ( lub ‘ ( ODual ‘ 𝐾 ) ) = ( lub ‘ ( ODual ‘ 𝐾 ) ) | |
| 20 | 11 12 4 3 13 16 18 19 | lubprdm | ⊢ ( 𝜑 → 𝑆 ∈ dom ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 21 | 9 8 | odulub | ⊢ ( 𝐾 ∈ Poset → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 22 | 1 21 | syl | ⊢ ( 𝜑 → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 23 | 22 | dmeqd | ⊢ ( 𝜑 → dom 𝐺 = dom ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 24 | 20 23 | eleqtrrd | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |
| 25 | 22 | fveq1d | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) ) |
| 26 | 11 12 4 3 13 16 18 19 | lubpr | ⊢ ( 𝜑 → ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) = 𝑋 ) |
| 27 | 25 26 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑋 ) |
| 28 | 24 27 | jca | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑆 ) = 𝑋 ) ) |