This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for glbprdm and glbpr . (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | |- ( ph -> K e. Poset ) |
|
| lubpr.b | |- B = ( Base ` K ) |
||
| lubpr.x | |- ( ph -> X e. B ) |
||
| lubpr.y | |- ( ph -> Y e. B ) |
||
| lubpr.l | |- .<_ = ( le ` K ) |
||
| lubpr.c | |- ( ph -> X .<_ Y ) |
||
| lubpr.s | |- ( ph -> S = { X , Y } ) |
||
| glbpr.g | |- G = ( glb ` K ) |
||
| Assertion | glbprlem | |- ( ph -> ( S e. dom G /\ ( G ` S ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | |- ( ph -> K e. Poset ) |
|
| 2 | lubpr.b | |- B = ( Base ` K ) |
|
| 3 | lubpr.x | |- ( ph -> X e. B ) |
|
| 4 | lubpr.y | |- ( ph -> Y e. B ) |
|
| 5 | lubpr.l | |- .<_ = ( le ` K ) |
|
| 6 | lubpr.c | |- ( ph -> X .<_ Y ) |
|
| 7 | lubpr.s | |- ( ph -> S = { X , Y } ) |
|
| 8 | glbpr.g | |- G = ( glb ` K ) |
|
| 9 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 10 | 9 | odupos | |- ( K e. Poset -> ( ODual ` K ) e. Poset ) |
| 11 | 1 10 | syl | |- ( ph -> ( ODual ` K ) e. Poset ) |
| 12 | 9 2 | odubas | |- B = ( Base ` ( ODual ` K ) ) |
| 13 | 9 5 | oduleval | |- `' .<_ = ( le ` ( ODual ` K ) ) |
| 14 | brcnvg | |- ( ( Y e. B /\ X e. B ) -> ( Y `' .<_ X <-> X .<_ Y ) ) |
|
| 15 | 4 3 14 | syl2anc | |- ( ph -> ( Y `' .<_ X <-> X .<_ Y ) ) |
| 16 | 6 15 | mpbird | |- ( ph -> Y `' .<_ X ) |
| 17 | prcom | |- { X , Y } = { Y , X } |
|
| 18 | 7 17 | eqtrdi | |- ( ph -> S = { Y , X } ) |
| 19 | eqid | |- ( lub ` ( ODual ` K ) ) = ( lub ` ( ODual ` K ) ) |
|
| 20 | 11 12 4 3 13 16 18 19 | lubprdm | |- ( ph -> S e. dom ( lub ` ( ODual ` K ) ) ) |
| 21 | 9 8 | odulub | |- ( K e. Poset -> G = ( lub ` ( ODual ` K ) ) ) |
| 22 | 1 21 | syl | |- ( ph -> G = ( lub ` ( ODual ` K ) ) ) |
| 23 | 22 | dmeqd | |- ( ph -> dom G = dom ( lub ` ( ODual ` K ) ) ) |
| 24 | 20 23 | eleqtrrd | |- ( ph -> S e. dom G ) |
| 25 | 22 | fveq1d | |- ( ph -> ( G ` S ) = ( ( lub ` ( ODual ` K ) ) ` S ) ) |
| 26 | 11 12 4 3 13 16 18 19 | lubpr | |- ( ph -> ( ( lub ` ( ODual ` K ) ) ` S ) = X ) |
| 27 | 25 26 | eqtrd | |- ( ph -> ( G ` S ) = X ) |
| 28 | 24 27 | jca | |- ( ph -> ( S e. dom G /\ ( G ` S ) = X ) ) |