This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | ||
| glbpr.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | glbprdm | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 2 | lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 6 | lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 7 | lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | |
| 8 | glbpr.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 9 | 1 2 3 4 5 6 7 8 | glbprlem | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑆 ) = 𝑋 ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |