This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexval.1 | |- X = ( Base ` G ) |
|
| gexval.2 | |- .x. = ( .g ` G ) |
||
| gexval.3 | |- .0. = ( 0g ` G ) |
||
| gexval.4 | |- E = ( gEx ` G ) |
||
| gexval.i | |- I = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
||
| Assertion | gexval | |- ( G e. V -> E = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.1 | |- X = ( Base ` G ) |
|
| 2 | gexval.2 | |- .x. = ( .g ` G ) |
|
| 3 | gexval.3 | |- .0. = ( 0g ` G ) |
|
| 4 | gexval.4 | |- E = ( gEx ` G ) |
|
| 5 | gexval.i | |- I = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
|
| 6 | df-gex | |- gEx = ( g e. _V |-> [_ { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
|
| 7 | nnex | |- NN e. _V |
|
| 8 | 7 | rabex | |- { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } e. _V |
| 9 | 8 | a1i | |- ( ( G e. V /\ g = G ) -> { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } e. _V ) |
| 10 | simpr | |- ( ( G e. V /\ g = G ) -> g = G ) |
|
| 11 | 10 | fveq2d | |- ( ( G e. V /\ g = G ) -> ( Base ` g ) = ( Base ` G ) ) |
| 12 | 11 1 | eqtr4di | |- ( ( G e. V /\ g = G ) -> ( Base ` g ) = X ) |
| 13 | 10 | fveq2d | |- ( ( G e. V /\ g = G ) -> ( .g ` g ) = ( .g ` G ) ) |
| 14 | 13 2 | eqtr4di | |- ( ( G e. V /\ g = G ) -> ( .g ` g ) = .x. ) |
| 15 | 14 | oveqd | |- ( ( G e. V /\ g = G ) -> ( y ( .g ` g ) x ) = ( y .x. x ) ) |
| 16 | 10 | fveq2d | |- ( ( G e. V /\ g = G ) -> ( 0g ` g ) = ( 0g ` G ) ) |
| 17 | 16 3 | eqtr4di | |- ( ( G e. V /\ g = G ) -> ( 0g ` g ) = .0. ) |
| 18 | 15 17 | eqeq12d | |- ( ( G e. V /\ g = G ) -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) |
| 19 | 12 18 | raleqbidv | |- ( ( G e. V /\ g = G ) -> ( A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) <-> A. x e. X ( y .x. x ) = .0. ) ) |
| 20 | 19 | rabbidv | |- ( ( G e. V /\ g = G ) -> { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | A. x e. X ( y .x. x ) = .0. } ) |
| 21 | 20 5 | eqtr4di | |- ( ( G e. V /\ g = G ) -> { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } = I ) |
| 22 | 21 | eqeq2d | |- ( ( G e. V /\ g = G ) -> ( i = { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } <-> i = I ) ) |
| 23 | 22 | biimpa | |- ( ( ( G e. V /\ g = G ) /\ i = { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } ) -> i = I ) |
| 24 | 23 | eqeq1d | |- ( ( ( G e. V /\ g = G ) /\ i = { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } ) -> ( i = (/) <-> I = (/) ) ) |
| 25 | 23 | infeq1d | |- ( ( ( G e. V /\ g = G ) /\ i = { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } ) -> inf ( i , RR , < ) = inf ( I , RR , < ) ) |
| 26 | 24 25 | ifbieq2d | |- ( ( ( G e. V /\ g = G ) /\ i = { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } ) -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 27 | 9 26 | csbied | |- ( ( G e. V /\ g = G ) -> [_ { y e. NN | A. x e. ( Base ` g ) ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 28 | elex | |- ( G e. V -> G e. _V ) |
|
| 29 | c0ex | |- 0 e. _V |
|
| 30 | ltso | |- < Or RR |
|
| 31 | 30 | infex | |- inf ( I , RR , < ) e. _V |
| 32 | 29 31 | ifex | |- if ( I = (/) , 0 , inf ( I , RR , < ) ) e. _V |
| 33 | 32 | a1i | |- ( G e. V -> if ( I = (/) , 0 , inf ( I , RR , < ) ) e. _V ) |
| 34 | 6 27 28 33 | fvmptd2 | |- ( G e. V -> ( gEx ` G ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 35 | 4 34 | eqtrid | |- ( G e. V -> E = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |