This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchac |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ||
| 2 | omex | ||
| 3 | 1 2 | unex | |
| 4 | ssun2 | ||
| 5 | ssdomg | ||
| 6 | 3 4 5 | mp2 | |
| 7 | id | ||
| 8 | 3 7 | eleqtrrid | |
| 9 | 3 | pwex | |
| 10 | 9 7 | eleqtrrid | |
| 11 | gchacg | ||
| 12 | 6 8 10 11 | mp3an2i | |
| 13 | 3 | canth2 | |
| 14 | sdomdom | ||
| 15 | 13 14 | ax-mp | |
| 16 | numdom | ||
| 17 | 12 15 16 | sylancl | |
| 18 | ssun1 | ||
| 19 | ssnum | ||
| 20 | 17 18 19 | sylancl | |
| 21 | 1 | a1i | |
| 22 | 20 21 | 2thd | |
| 23 | 22 | eqrdv | |
| 24 | dfac10 | ||
| 25 | 23 24 | sylibr |