This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gapm.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gapm.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑌 ↦ ( 𝐴 ⊕ 𝑥 ) ) | ||
| Assertion | gapm | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑌 –1-1-onto→ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gapm.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gapm.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑌 ↦ ( 𝐴 ⊕ 𝑥 ) ) | |
| 3 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 4 | 3 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 5 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) | |
| 6 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) | |
| 7 | 4 5 6 | fovcdmd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 ⊕ 𝑥 ) ∈ 𝑌 ) |
| 8 | 3 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 9 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 11 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) | |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 1 12 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 14 | 10 11 13 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 15 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 16 | 8 14 15 | fovcdmd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) ∈ 𝑌 ) |
| 17 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 18 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) | |
| 19 | simprl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑌 ) | |
| 20 | simprr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑦 ∈ 𝑌 ) | |
| 21 | 1 12 | gacan | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝑥 ) = 𝑦 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) = 𝑥 ) ) |
| 22 | 17 18 19 20 21 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝑥 ) = 𝑦 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) = 𝑥 ) ) |
| 23 | 22 | bicomd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) = 𝑥 ↔ ( 𝐴 ⊕ 𝑥 ) = 𝑦 ) ) |
| 24 | eqcom | ⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) = 𝑥 ) | |
| 25 | eqcom | ⊢ ( 𝑦 = ( 𝐴 ⊕ 𝑥 ) ↔ ( 𝐴 ⊕ 𝑥 ) = 𝑦 ) | |
| 26 | 23 24 25 | 3bitr4g | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ 𝑦 ) ↔ 𝑦 = ( 𝐴 ⊕ 𝑥 ) ) ) |
| 27 | 2 7 16 26 | f1o2d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑌 –1-1-onto→ 𝑌 ) |