This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaf.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | gafo | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 3 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 4 | 3 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 5 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 7 | 4 6 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 8 | simpr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) | |
| 9 | 5 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
| 10 | 9 | eqcomd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) |
| 11 | rspceov | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) | |
| 12 | 7 8 10 11 | syl3anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) |
| 14 | foov | ⊢ ( ⊕ : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ↔ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) ) | |
| 15 | 2 13 14 | sylanbrc | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ) |