This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaf.1 | ||
| Assertion | gafo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | ||
| 2 | 1 | gaf | |
| 3 | gagrp | ||
| 4 | 3 | adantr | |
| 5 | eqid | ||
| 6 | 1 5 | grpidcl | |
| 7 | 4 6 | syl | |
| 8 | simpr | ||
| 9 | 5 | gagrpid | |
| 10 | 9 | eqcomd | |
| 11 | rspceov | ||
| 12 | 7 8 10 11 | syl3anc | |
| 13 | 12 | ralrimiva | |
| 14 | foov | ||
| 15 | 2 13 14 | sylanbrc |