This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaf.1 | |- X = ( Base ` G ) |
|
| Assertion | gafo | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) -onto-> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | |- X = ( Base ` G ) |
|
| 2 | 1 | gaf | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) |
| 3 | gagrp | |- ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) |
|
| 4 | 3 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> G e. Grp ) |
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 1 5 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 7 | 4 6 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> ( 0g ` G ) e. X ) |
| 8 | simpr | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> x e. Y ) |
|
| 9 | 5 | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> ( ( 0g ` G ) .(+) x ) = x ) |
| 10 | 9 | eqcomd | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> x = ( ( 0g ` G ) .(+) x ) ) |
| 11 | rspceov | |- ( ( ( 0g ` G ) e. X /\ x e. Y /\ x = ( ( 0g ` G ) .(+) x ) ) -> E. y e. X E. z e. Y x = ( y .(+) z ) ) |
|
| 12 | 7 8 10 11 | syl3anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ x e. Y ) -> E. y e. X E. z e. Y x = ( y .(+) z ) ) |
| 13 | 12 | ralrimiva | |- ( .(+) e. ( G GrpAct Y ) -> A. x e. Y E. y e. X E. z e. Y x = ( y .(+) z ) ) |
| 14 | foov | |- ( .(+) : ( X X. Y ) -onto-> Y <-> ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y E. y e. X E. z e. Y x = ( y .(+) z ) ) ) |
|
| 15 | 2 13 14 | sylanbrc | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) -onto-> Y ) |