This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of defining the first three values of a sequence on NN . (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fztpval | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ∧ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | fztp | ⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 4 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | 5 6 | addcomi | ⊢ ( 2 + 1 ) = ( 1 + 2 ) |
| 8 | 4 7 | eqtri | ⊢ 3 = ( 1 + 2 ) |
| 9 | 8 | oveq2i | ⊢ ( 1 ... 3 ) = ( 1 ... ( 1 + 2 ) ) |
| 10 | tpeq3 | ⊢ ( 3 = ( 1 + 2 ) → { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } ) | |
| 11 | 8 10 | ax-mp | ⊢ { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } |
| 12 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 13 | tpeq2 | ⊢ ( 2 = ( 1 + 1 ) → { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | |
| 14 | 12 13 | ax-mp | ⊢ { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 15 | 11 14 | eqtri | ⊢ { 1 , 2 , 3 } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 16 | 3 9 15 | 3eqtr4i | ⊢ ( 1 ... 3 ) = { 1 , 2 , 3 } |
| 17 | 16 | raleqi | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ∀ 𝑥 ∈ { 1 , 2 , 3 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ) |
| 18 | 1ex | ⊢ 1 ∈ V | |
| 19 | 2ex | ⊢ 2 ∈ V | |
| 20 | 3ex | ⊢ 3 ∈ V | |
| 21 | fveq2 | ⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) | |
| 22 | iftrue | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐴 ) | |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 1 ) = 𝐴 ) ) |
| 24 | fveq2 | ⊢ ( 𝑥 = 2 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 2 ) ) | |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | 1lt2 | ⊢ 1 < 2 | |
| 27 | 25 26 | gtneii | ⊢ 2 ≠ 1 |
| 28 | neeq1 | ⊢ ( 𝑥 = 2 → ( 𝑥 ≠ 1 ↔ 2 ≠ 1 ) ) | |
| 29 | 27 28 | mpbiri | ⊢ ( 𝑥 = 2 → 𝑥 ≠ 1 ) |
| 30 | ifnefalse | ⊢ ( 𝑥 ≠ 1 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) |
| 32 | iftrue | ⊢ ( 𝑥 = 2 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐵 ) | |
| 33 | 31 32 | eqtrd | ⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
| 34 | 24 33 | eqeq12d | ⊢ ( 𝑥 = 2 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 3 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 3 ) ) | |
| 36 | 1lt3 | ⊢ 1 < 3 | |
| 37 | 25 36 | gtneii | ⊢ 3 ≠ 1 |
| 38 | neeq1 | ⊢ ( 𝑥 = 3 → ( 𝑥 ≠ 1 ↔ 3 ≠ 1 ) ) | |
| 39 | 37 38 | mpbiri | ⊢ ( 𝑥 = 3 → 𝑥 ≠ 1 ) |
| 40 | 39 30 | syl | ⊢ ( 𝑥 = 3 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) |
| 41 | 2re | ⊢ 2 ∈ ℝ | |
| 42 | 2lt3 | ⊢ 2 < 3 | |
| 43 | 41 42 | gtneii | ⊢ 3 ≠ 2 |
| 44 | neeq1 | ⊢ ( 𝑥 = 3 → ( 𝑥 ≠ 2 ↔ 3 ≠ 2 ) ) | |
| 45 | 43 44 | mpbiri | ⊢ ( 𝑥 = 3 → 𝑥 ≠ 2 ) |
| 46 | ifnefalse | ⊢ ( 𝑥 ≠ 2 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐶 ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑥 = 3 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐶 ) |
| 48 | 40 47 | eqtrd | ⊢ ( 𝑥 = 3 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐶 ) |
| 49 | 35 48 | eqeq12d | ⊢ ( 𝑥 = 3 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |
| 50 | 18 19 20 23 34 49 | raltp | ⊢ ( ∀ 𝑥 ∈ { 1 , 2 , 3 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ∧ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |
| 51 | 17 50 | bitri | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ∧ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |