This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of defining the first two values of a sequence on NN . (Contributed by NM, 5-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzprval | |- ( A. x e. ( 1 ... 2 ) ( F ` x ) = if ( x = 1 , A , B ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz12pr | |- ( 1 ... 2 ) = { 1 , 2 } |
|
| 2 | 1 | raleqi | |- ( A. x e. ( 1 ... 2 ) ( F ` x ) = if ( x = 1 , A , B ) <-> A. x e. { 1 , 2 } ( F ` x ) = if ( x = 1 , A , B ) ) |
| 3 | 1ex | |- 1 e. _V |
|
| 4 | 2ex | |- 2 e. _V |
|
| 5 | fveq2 | |- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
|
| 6 | iftrue | |- ( x = 1 -> if ( x = 1 , A , B ) = A ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = 1 -> ( ( F ` x ) = if ( x = 1 , A , B ) <-> ( F ` 1 ) = A ) ) |
| 8 | fveq2 | |- ( x = 2 -> ( F ` x ) = ( F ` 2 ) ) |
|
| 9 | 1ne2 | |- 1 =/= 2 |
|
| 10 | 9 | necomi | |- 2 =/= 1 |
| 11 | pm13.181 | |- ( ( x = 2 /\ 2 =/= 1 ) -> x =/= 1 ) |
|
| 12 | 10 11 | mpan2 | |- ( x = 2 -> x =/= 1 ) |
| 13 | 12 | neneqd | |- ( x = 2 -> -. x = 1 ) |
| 14 | 13 | iffalsed | |- ( x = 2 -> if ( x = 1 , A , B ) = B ) |
| 15 | 8 14 | eqeq12d | |- ( x = 2 -> ( ( F ` x ) = if ( x = 1 , A , B ) <-> ( F ` 2 ) = B ) ) |
| 16 | 3 4 7 15 | ralpr | |- ( A. x e. { 1 , 2 } ( F ` x ) = if ( x = 1 , A , B ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B ) ) |
| 17 | 2 16 | bitri | |- ( A. x e. ( 1 ... 2 ) ( F ` x ) = if ( x = 1 , A , B ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B ) ) |