This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.181 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011) (Proof shortened by Wolf Lammen, 30-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.181 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) | |
| 2 | 1 | biimpar | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |