This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0n | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 0 ..^ ( 𝑁 − 𝑀 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 3 | suble0 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 𝑁 − 𝑀 ) ≤ 0 ↔ 𝑁 ≤ 𝑀 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 − 𝑀 ) ≤ 0 ↔ 𝑁 ≤ 𝑀 ) ) |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) | |
| 7 | fzon | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝑁 − 𝑀 ) ∈ ℤ ) → ( ( 𝑁 − 𝑀 ) ≤ 0 ↔ ( 0 ..^ ( 𝑁 − 𝑀 ) ) = ∅ ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 − 𝑀 ) ≤ 0 ↔ ( 0 ..^ ( 𝑁 − 𝑀 ) ) = ∅ ) ) |
| 9 | 4 8 | bitr3d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 0 ..^ ( 𝑁 − 𝑀 ) ) = ∅ ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 0 ..^ ( 𝑁 − 𝑀 ) ) = ∅ ) ) |