This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set difference of two half-open range of sequential integers sharing the same starting value. (Contributed by Thierry Arnoux, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodif1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑀 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( 𝐾 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplit | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ..^ 𝑁 ) = ( ( 𝑀 ..^ 𝐾 ) ∪ ( 𝐾 ..^ 𝑁 ) ) ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑀 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( ( ( 𝑀 ..^ 𝐾 ) ∪ ( 𝐾 ..^ 𝑁 ) ) ∖ ( 𝑀 ..^ 𝐾 ) ) ) |
| 3 | difundir | ⊢ ( ( ( 𝑀 ..^ 𝐾 ) ∪ ( 𝐾 ..^ 𝑁 ) ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( ( ( 𝑀 ..^ 𝐾 ) ∖ ( 𝑀 ..^ 𝐾 ) ) ∪ ( ( 𝐾 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) ) | |
| 4 | difid | ⊢ ( ( 𝑀 ..^ 𝐾 ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ∅ | |
| 5 | incom | ⊢ ( ( 𝐾 ..^ 𝑁 ) ∩ ( 𝑀 ..^ 𝐾 ) ) = ( ( 𝑀 ..^ 𝐾 ) ∩ ( 𝐾 ..^ 𝑁 ) ) | |
| 6 | fzodisj | ⊢ ( ( 𝑀 ..^ 𝐾 ) ∩ ( 𝐾 ..^ 𝑁 ) ) = ∅ | |
| 7 | 5 6 | eqtri | ⊢ ( ( 𝐾 ..^ 𝑁 ) ∩ ( 𝑀 ..^ 𝐾 ) ) = ∅ |
| 8 | disj3 | ⊢ ( ( ( 𝐾 ..^ 𝑁 ) ∩ ( 𝑀 ..^ 𝐾 ) ) = ∅ ↔ ( 𝐾 ..^ 𝑁 ) = ( ( 𝐾 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) ) | |
| 9 | 7 8 | mpbi | ⊢ ( 𝐾 ..^ 𝑁 ) = ( ( 𝐾 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) |
| 10 | 9 | eqcomi | ⊢ ( ( 𝐾 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( 𝐾 ..^ 𝑁 ) |
| 11 | 4 10 | uneq12i | ⊢ ( ( ( 𝑀 ..^ 𝐾 ) ∖ ( 𝑀 ..^ 𝐾 ) ) ∪ ( ( 𝐾 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) ) = ( ∅ ∪ ( 𝐾 ..^ 𝑁 ) ) |
| 12 | 0un | ⊢ ( ∅ ∪ ( 𝐾 ..^ 𝑁 ) ) = ( 𝐾 ..^ 𝑁 ) | |
| 13 | 3 11 12 | 3eqtri | ⊢ ( ( ( 𝑀 ..^ 𝐾 ) ∪ ( 𝐾 ..^ 𝑁 ) ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( 𝐾 ..^ 𝑁 ) |
| 14 | 2 13 | eqtrdi | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑀 ..^ 𝑁 ) ∖ ( 𝑀 ..^ 𝐾 ) ) = ( 𝐾 ..^ 𝑁 ) ) |