This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set difference of two half-open range of sequential integers sharing the same starting value. (Contributed by Thierry Arnoux, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodif1 | |- ( K e. ( M ... N ) -> ( ( M ..^ N ) \ ( M ..^ K ) ) = ( K ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplit | |- ( K e. ( M ... N ) -> ( M ..^ N ) = ( ( M ..^ K ) u. ( K ..^ N ) ) ) |
|
| 2 | 1 | difeq1d | |- ( K e. ( M ... N ) -> ( ( M ..^ N ) \ ( M ..^ K ) ) = ( ( ( M ..^ K ) u. ( K ..^ N ) ) \ ( M ..^ K ) ) ) |
| 3 | difundir | |- ( ( ( M ..^ K ) u. ( K ..^ N ) ) \ ( M ..^ K ) ) = ( ( ( M ..^ K ) \ ( M ..^ K ) ) u. ( ( K ..^ N ) \ ( M ..^ K ) ) ) |
|
| 4 | difid | |- ( ( M ..^ K ) \ ( M ..^ K ) ) = (/) |
|
| 5 | incom | |- ( ( K ..^ N ) i^i ( M ..^ K ) ) = ( ( M ..^ K ) i^i ( K ..^ N ) ) |
|
| 6 | fzodisj | |- ( ( M ..^ K ) i^i ( K ..^ N ) ) = (/) |
|
| 7 | 5 6 | eqtri | |- ( ( K ..^ N ) i^i ( M ..^ K ) ) = (/) |
| 8 | disj3 | |- ( ( ( K ..^ N ) i^i ( M ..^ K ) ) = (/) <-> ( K ..^ N ) = ( ( K ..^ N ) \ ( M ..^ K ) ) ) |
|
| 9 | 7 8 | mpbi | |- ( K ..^ N ) = ( ( K ..^ N ) \ ( M ..^ K ) ) |
| 10 | 9 | eqcomi | |- ( ( K ..^ N ) \ ( M ..^ K ) ) = ( K ..^ N ) |
| 11 | 4 10 | uneq12i | |- ( ( ( M ..^ K ) \ ( M ..^ K ) ) u. ( ( K ..^ N ) \ ( M ..^ K ) ) ) = ( (/) u. ( K ..^ N ) ) |
| 12 | 0un | |- ( (/) u. ( K ..^ N ) ) = ( K ..^ N ) |
|
| 13 | 3 11 12 | 3eqtri | |- ( ( ( M ..^ K ) u. ( K ..^ N ) ) \ ( M ..^ K ) ) = ( K ..^ N ) |
| 14 | 2 13 | eqtrdi | |- ( K e. ( M ... N ) -> ( ( M ..^ N ) \ ( M ..^ K ) ) = ( K ..^ N ) ) |