This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzomaxdif | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐴 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐴 ∈ ℂ ) |
| 3 | elfzoelz | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐵 ∈ ℤ ) | |
| 4 | 3 | zcnd | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐵 ∈ ℂ ) |
| 5 | abssub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 8 | fzomaxdiflem | ⊢ ( ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) |
| 10 | fzomaxdiflem | ⊢ ( ( ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) | |
| 11 | 10 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) |
| 12 | 1 | zred | ⊢ ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 13 | 3 | zred | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐵 ∈ ℝ ) |
| 14 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) |
| 16 | 9 11 15 | mpjaodan | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) |