This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq based on the "divides" relation. (Contributed by AV, 14-Mar-2021) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodlteqALT | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝐼 + 𝑆 ) mod 𝑁 ) = ( ( 𝐽 + 𝑆 ) mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) ) | |
| 2 | elfzoelz | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) | |
| 3 | simplrr | ⊢ ( ( ( 𝐽 ∈ ℤ ∧ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ) ∧ 𝑆 ∈ ℤ ) → 𝑁 ∈ ℕ ) | |
| 4 | nn0z | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( 𝐽 ∈ ℤ ∧ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ) → 𝐼 ∈ ℤ ) |
| 6 | zaddcl | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝐼 + 𝑆 ) ∈ ℤ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( 𝐽 ∈ ℤ ∧ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ) ∧ 𝑆 ∈ ℤ ) → ( 𝐼 + 𝑆 ) ∈ ℤ ) |
| 8 | zaddcl | ⊢ ( ( 𝐽 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝐽 + 𝑆 ) ∈ ℤ ) | |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝐽 ∈ ℤ ∧ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ) ∧ 𝑆 ∈ ℤ ) → ( 𝐽 + 𝑆 ) ∈ ℤ ) |
| 10 | 3 7 9 | 3jca | ⊢ ( ( ( 𝐽 ∈ ℤ ∧ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ) ∧ 𝑆 ∈ ℤ ) → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) |
| 11 | 10 | exp31 | ⊢ ( 𝐽 ∈ ℤ → ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℤ → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) ) ) |
| 12 | 2 11 | syl | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ ℤ → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) ) ) |
| 13 | 12 | com12 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ∈ ℤ → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ∈ ℤ → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) ) ) |
| 15 | 1 14 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ∈ ℤ → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) ) ) |
| 16 | 15 | 3imp | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) ) |
| 17 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐼 + 𝑆 ) ∈ ℤ ∧ ( 𝐽 + 𝑆 ) ∈ ℤ ) → ( ( ( 𝐼 + 𝑆 ) mod 𝑁 ) = ( ( 𝐽 + 𝑆 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐼 + 𝑆 ) − ( 𝐽 + 𝑆 ) ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝐼 + 𝑆 ) mod 𝑁 ) = ( ( 𝐽 + 𝑆 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐼 + 𝑆 ) − ( 𝐽 + 𝑆 ) ) ) ) |
| 19 | elfzoel2 | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 20 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 21 | 20 | subid1d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 0 ) = 𝑁 ) |
| 22 | 21 | eqcomd | ⊢ ( 𝑁 ∈ ℤ → 𝑁 = ( 𝑁 − 0 ) ) |
| 23 | 19 22 | syl | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → 𝑁 = ( 𝑁 − 0 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → 𝑁 = ( 𝑁 − 0 ) ) |
| 25 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → 𝐼 ∈ ℤ ) | |
| 26 | 25 | zcnd | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → 𝐼 ∈ ℂ ) |
| 27 | 2 | zcnd | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℂ ) |
| 28 | zcn | ⊢ ( 𝑆 ∈ ℤ → 𝑆 ∈ ℂ ) | |
| 29 | pnpcan2 | ⊢ ( ( 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑆 ∈ ℂ ) → ( ( 𝐼 + 𝑆 ) − ( 𝐽 + 𝑆 ) ) = ( 𝐼 − 𝐽 ) ) | |
| 30 | 26 27 28 29 | syl3an | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( ( 𝐼 + 𝑆 ) − ( 𝐽 + 𝑆 ) ) = ( 𝐼 − 𝐽 ) ) |
| 31 | 24 30 | breq12d | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( 𝑁 ∥ ( ( 𝐼 + 𝑆 ) − ( 𝐽 + 𝑆 ) ) ↔ ( 𝑁 − 0 ) ∥ ( 𝐼 − 𝐽 ) ) ) |
| 32 | fzocongeq | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑁 − 0 ) ∥ ( 𝐼 − 𝐽 ) ↔ 𝐼 = 𝐽 ) ) | |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( ( 𝑁 − 0 ) ∥ ( 𝐼 − 𝐽 ) ↔ 𝐼 = 𝐽 ) ) |
| 34 | 18 31 33 | 3bitrd | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝐼 + 𝑆 ) mod 𝑁 ) = ( ( 𝐽 + 𝑆 ) mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |