This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzocongeq | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 | |- ( B e. ( C ..^ D ) -> D e. ZZ ) |
|
| 2 | elfzoel1 | |- ( B e. ( C ..^ D ) -> C e. ZZ ) |
|
| 3 | 1 2 | zsubcld | |- ( B e. ( C ..^ D ) -> ( D - C ) e. ZZ ) |
| 4 | elfzoelz | |- ( A e. ( C ..^ D ) -> A e. ZZ ) |
|
| 5 | elfzoelz | |- ( B e. ( C ..^ D ) -> B e. ZZ ) |
|
| 6 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. ZZ ) |
| 8 | dvdsabsb | |- ( ( ( D - C ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) |
|
| 9 | 3 7 8 | syl2an2 | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) |
| 10 | fzomaxdif | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) ) |
|
| 11 | fzo0dvdseq | |- ( ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
|
| 12 | 10 11 | syl | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
| 13 | 9 12 | bitrd | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
| 14 | 4 | zcnd | |- ( A e. ( C ..^ D ) -> A e. CC ) |
| 15 | 5 | zcnd | |- ( B e. ( C ..^ D ) -> B e. CC ) |
| 16 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 17 | 14 15 16 | syl2an | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. CC ) |
| 18 | 17 | abs00ad | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> ( A - B ) = 0 ) ) |
| 19 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
|
| 20 | 14 15 19 | syl2an | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( A - B ) = 0 <-> A = B ) ) |
| 21 | 18 20 | bitrd | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> A = B ) ) |
| 22 | 13 21 | bitrd | |- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> A = B ) ) |