This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| Assertion | fzen2 | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 3 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | zsubcl | |- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 - M ) e. ZZ ) |
|
| 6 | 4 2 5 | sylancr | |- ( N e. ( ZZ>= ` M ) -> ( 1 - M ) e. ZZ ) |
| 7 | fzen | |- ( ( M e. ZZ /\ N e. ZZ /\ ( 1 - M ) e. ZZ ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) ) |
|
| 8 | 2 3 6 7 | syl3anc | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) ) |
| 9 | 2 | zcnd | |- ( N e. ( ZZ>= ` M ) -> M e. CC ) |
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | pncan3 | |- ( ( M e. CC /\ 1 e. CC ) -> ( M + ( 1 - M ) ) = 1 ) |
|
| 12 | 9 10 11 | sylancl | |- ( N e. ( ZZ>= ` M ) -> ( M + ( 1 - M ) ) = 1 ) |
| 13 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 14 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 15 | addsubass | |- ( ( N e. CC /\ 1 e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
|
| 16 | 10 15 | mp3an2 | |- ( ( N e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 17 | 13 14 16 | syl2an | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 18 | 3 2 17 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 19 | 18 | eqcomd | |- ( N e. ( ZZ>= ` M ) -> ( N + ( 1 - M ) ) = ( ( N + 1 ) - M ) ) |
| 20 | 12 19 | oveq12d | |- ( N e. ( ZZ>= ` M ) -> ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) = ( 1 ... ( ( N + 1 ) - M ) ) ) |
| 21 | 8 20 | breqtrd | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) ) |
| 22 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 23 | uznn0sub | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
|
| 24 | 1 | fzennn | |- ( ( ( N + 1 ) - M ) e. NN0 -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| 25 | 22 23 24 | 3syl | |- ( N e. ( ZZ>= ` M ) -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| 26 | entr | |- ( ( ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) /\ ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
|
| 27 | 21 25 26 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |