This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| Assertion | cardfz | ⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | 1 | fzennn | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) |
| 3 | carden2b | ⊢ ( ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) → ( card ‘ ( 1 ... 𝑁 ) ) = ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) ) |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | 5 1 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) |
| 7 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 8 | 7 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 9 | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) → ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω ) | |
| 10 | 6 8 9 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω ) |
| 11 | cardnn | ⊢ ( ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω → ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |
| 13 | 4 12 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |