This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0to5un2tp | ⊢ ( 0 ... 5 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 , 5 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | 3z | ⊢ 3 ∈ ℤ | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 3pos | ⊢ 0 < 3 | |
| 7 | 4 5 6 | ltleii | ⊢ 0 ≤ 3 |
| 8 | eluz2 | ⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3 ) ) | |
| 9 | 2 3 7 8 | mpbir3an | ⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 10 | 1 9 | eqeltri | ⊢ ( 2 + 1 ) ∈ ( ℤ≥ ‘ 0 ) |
| 11 | 2z | ⊢ 2 ∈ ℤ | |
| 12 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 13 | 12 | nn0zi | ⊢ 5 ∈ ℤ |
| 14 | 2re | ⊢ 2 ∈ ℝ | |
| 15 | 5re | ⊢ 5 ∈ ℝ | |
| 16 | 2lt5 | ⊢ 2 < 5 | |
| 17 | 14 15 16 | ltleii | ⊢ 2 ≤ 5 |
| 18 | eluz2 | ⊢ ( 5 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 2 ≤ 5 ) ) | |
| 19 | 11 13 17 18 | mpbir3an | ⊢ 5 ∈ ( ℤ≥ ‘ 2 ) |
| 20 | fzsplit2 | ⊢ ( ( ( 2 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 5 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 ... 5 ) = ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 5 ) ) ) | |
| 21 | 10 19 20 | mp2an | ⊢ ( 0 ... 5 ) = ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 5 ) ) |
| 22 | fz0tp | ⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } | |
| 23 | 1 | oveq1i | ⊢ ( ( 2 + 1 ) ... 5 ) = ( 3 ... 5 ) |
| 24 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 25 | 24 | eqcomi | ⊢ 5 = ( 3 + 2 ) |
| 26 | 25 | oveq2i | ⊢ ( 3 ... 5 ) = ( 3 ... ( 3 + 2 ) ) |
| 27 | fztp | ⊢ ( 3 ∈ ℤ → ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } ) | |
| 28 | 3 27 | ax-mp | ⊢ ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } |
| 29 | eqid | ⊢ 3 = 3 | |
| 30 | id | ⊢ ( 3 = 3 → 3 = 3 ) | |
| 31 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 32 | 31 | a1i | ⊢ ( 3 = 3 → ( 3 + 1 ) = 4 ) |
| 33 | 24 | a1i | ⊢ ( 3 = 3 → ( 3 + 2 ) = 5 ) |
| 34 | 30 32 33 | tpeq123d | ⊢ ( 3 = 3 → { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } ) |
| 35 | 29 34 | ax-mp | ⊢ { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } |
| 36 | 26 28 35 | 3eqtri | ⊢ ( 3 ... 5 ) = { 3 , 4 , 5 } |
| 37 | 23 36 | eqtri | ⊢ ( ( 2 + 1 ) ... 5 ) = { 3 , 4 , 5 } |
| 38 | 22 37 | uneq12i | ⊢ ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 5 ) ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 , 5 } ) |
| 39 | 21 38 | eqtri | ⊢ ( 0 ... 5 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 , 5 } ) |