This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvffz0 | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 𝐼 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) | |
| 2 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ℕ0 ) | |
| 3 | simp1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 4 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 5 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 6 | ltle | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) | |
| 7 | 4 5 6 | syl2anr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) |
| 8 | 7 | 3impia | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ≤ 𝑁 ) |
| 9 | elfz2nn0 | ⊢ ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ≤ 𝑁 ) ) | |
| 10 | 2 3 8 9 | syl3anbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
| 12 | 1 11 | ffvelcdmd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 𝐼 ) ∈ 𝑉 ) |