This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvffz0 | |- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> ( P ` I ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> P : ( 0 ... N ) --> V ) |
|
| 2 | simp2 | |- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. NN0 ) |
|
| 3 | simp1 | |- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> N e. NN0 ) |
|
| 4 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 5 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 6 | ltle | |- ( ( I e. RR /\ N e. RR ) -> ( I < N -> I <_ N ) ) |
|
| 7 | 4 5 6 | syl2anr | |- ( ( N e. NN0 /\ I e. NN0 ) -> ( I < N -> I <_ N ) ) |
| 8 | 7 | 3impia | |- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I <_ N ) |
| 9 | elfz2nn0 | |- ( I e. ( 0 ... N ) <-> ( I e. NN0 /\ N e. NN0 /\ I <_ N ) ) |
|
| 10 | 2 3 8 9 | syl3anbrc | |- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. ( 0 ... N ) ) |
| 11 | 10 | adantr | |- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> I e. ( 0 ... N ) ) |
| 12 | 1 11 | ffvelcdmd | |- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> ( P ` I ) e. V ) |